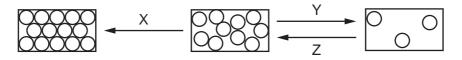
Paper 1

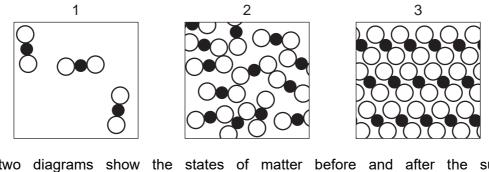
Questions are applicable for both core and extended candidates


- 1 Which statement about a solid, a liquid or a gas is correct?
 - **A** A solid has a fixed shape and can be compressed.
 - **B** A liquid takes the shape of the container it is in and can be compressed.
 - **C** A solid has no fixed shape and cannot be compressed.
 - **D** A gas takes the shape of the container it is in and can be compressed.
- 2 The arrangements of particles in solids, liquids and gases are different.

Which statement about the molecules in ice, water or steam is correct?

- **A** The H_2O molecules are on average closest together in steam.
- **B** The H_2O molecules are on average furthest apart in water.
- **C** The H_2O molecules in steam have the second highest average velocity.
- **D** The H_2O molecules in ice are able to vibrate.
- 3 Which statement about liquids and gases is correct?
 - **A** 1 cm^3 of gas contains more particles than 1 cm^3 of liquid.
 - **B** A given mass of liquid has a fixed volume at room temperature.
 - **C** Particles in a liquid can easily be forced closer together.
 - **D** Particles in a liquid have fixed positions.

4 The three rectangles show the arrangements of the particles in each of the three states of matter.


X, Y and Z represent the processes needed to change from one state to another.

What are the processes X, Y and Z?

	Х	Y	Z	
Α	melting	condensing	evaporating	
в	evaporating	melting	freezing	
С	melting	freezing	condensing	
D	freezing	evaporating	condensing	

5 Diagrams of the three states of matter for carbon dioxide are shown.

Which two diagrams show the states of matter before and after the sublimation of carbon dioxide?

A 2 to 1 **B** 2 to 3 **C** 3 to 1 **D** 3 to 2

6 Which row describes the spacing and arrangement of particles in a solid, a liquid and a gas?

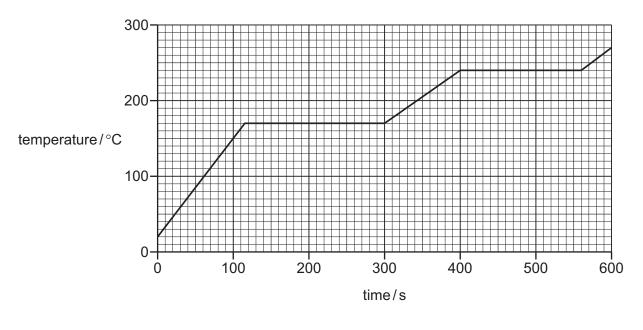
	solid	liquid	gas
Α	close together and randomly arranged	close together and regularly arranged	far apart and randomly arranged
В	close together and randomly arranged	far apart and randomly arranged	close together and randomly arranged
с	close together and regularly arranged	close together and randomly arranged	far apart and randomly arranged
D	close together and regularly arranged	close together and regularly arranged	close together and randomly arranged

7 The melting points and boiling points of three elements, at 1 atm pressure, are shown.

	melting point /°C	boiling point /°C
argon	-189	-186
nitrogen	-210	-196
oxygen	-218	-183

Separate samples of argon, nitrogen and oxygen are stored at –200 °C and at 1 atm pressure.

How many samples are liquids?

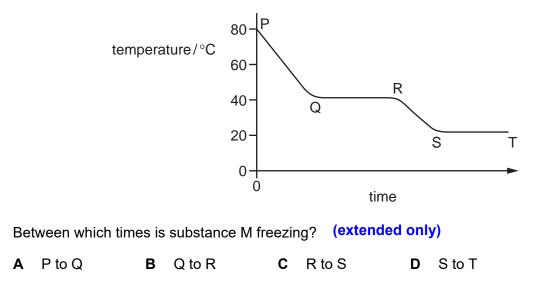

A 0 **B** 1 **C** 2 **D** 3

Paper 2

Questions are applicable for both core and extended candidates unless indicated in the question

8 Solid X is heated for 600 seconds.

The graph shows the heating curve that is obtained. (extended only)



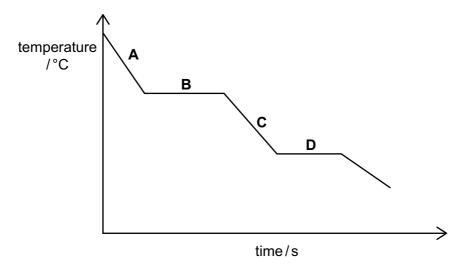
What is the melting point of X?			(extended	only)			
Α	20 °C	в	170 °C	С	240 °C	D	270 °C

9 Substance M is a solid at 30 °C. (extended only)

The substance is heated to $80\,^\circ\text{C}$ and its temperature measured as it cools down to room temperature.

The cooling curve is shown.

10 A gas is placed in a sealed container. The gas has a pressure of one atmosphere and a temperature of 50 °C.


It is heated to 100 °C.

Which row describes the cause of the pressure of the gas and the effect of increasing the temperature of the gas? (extended only)

	cause of gas pressure	the effect of increased temperature of the gas		
A	collisions between gas particles	collisions become less frequent		
В	collisions between gas particles	the average speed of the gas particles increases		
С	collisions between gas particles and the container	collisions become less frequent		
D	collisions between gas particles and the container	the average speed of the gas particles increases		

11 A gaseous substance is slowly cooled and the temperature recorded every second.

The results are shown on the graph. (extended only)

At which point is the substance a solid? (extended only)

12 The diagram shows the changes of state between a solid, a liquid and a gas.

solid
$$\frac{1}{3}$$
 liquid $\frac{2}{4}$ gas

In which changes of state is energy being given out?

A 1 and 2 **B** 1 and 4 **C** 2 and 3 **D** 3 and 4